


 Von Neumann
◦ traditional CPUs

 Systolic arrays

 SIMD architectures
◦ for example, Intel’s SSE, MMX

 Vector processors

 Stream processors
◦ GPUs are a form of these



 Classic form of programmable processor 
 Creates Von-Neumann bottleneck

◦ separation of memory and ALU creates bandwidth 
problems

◦ today’s ALUs are much faster than today’s data links 
◦ this limits compute-intensive applications 
◦ cache management to overcome slow data links adds to 

control overhead



 Systolic Arrays
◦ arrange computational units in a specific 

topology (ring, line)

◦ data flow from one unit to the next

 SIMD (Same Instruction Multiple Data)

◦ a single set of instructions is executed by different 

processors in a collection 

◦ multiple data streams are presented to each 

processing unit

◦ SSE, MMX is a 4-way SIMD, but still requires 
instruction decode for each word 



 Vector processors
◦ made popular by Cray 

supercomputers
◦ represent data as a vector
◦ load vector with a single 

instruction (amortizes 
instruction decode 
overhead)

◦ exposes data parallelism 
by operating on large 
aggregates of data



 In VLSI technology, computing is cheap
◦ thousands of arithmetic logic units operating at 

multiple GHz can fit on 1cm2 die

 But… delivering instructions and data to 
these is expensive

 Example:
◦ only 6.5% of the Itanium die is devoted to its 12 

integer and 2 floating point ALUs and their registers
◦ remainder is used for communication, control, and 

storage 



 Thus, general-purpose use of CPUs comes at 
a price

 In contrast:
◦ the more efficient control and communication on 

the Nvidia GeForce4 enables the use of many 
hundreds of floating-point and integer ALUs

◦ for the special purpose of rendering 3D images

◦ this task exposes abundant parallelism

◦ requires little global communication and storage



 Goal:
◦ expose these patterns of communication, control, 

and parallelism to a wider class of applications
◦ Create a general purpose streaming architecture 

without compromising its advantages

 Proposed streaming architectures
◦ Imagine (Stanford)
◦ CHEOPS

 Existing implementations that come close
◦ Nvidia FX, ATI Radeon GPUs
◦ enable GP-GPU (general purpose streaming, GP-

GPU)



 Organize an application into streams and 
kernels
◦ expose inherent locality and concurrency (here, 

of media-processing applications)

 This creates the programming model for 
stream processors
◦ and therefore also for GPGPU



 Local register files (LRFs)
◦ operands for arithmetic operations (similar to 

caches on CPUs)
◦ exploit fine-grain locality

 Stream register files (SRFs)
◦ capture coarse-grain locality
◦ efficiently transfer data to and                                              

from the LRFs

 Off-chip memory
◦ store global data 
◦ only use when necessary 



 These form a bandwidth hierarchy as well
◦ roughly an order of magnitude for each level

◦ well matched by today’s VLSI technology

 By exploiting the locality of media operations 
the hundreds of ALUs can operate at peak 
rate

 While CPUs and DSPs rely on global storage 
and communication, stream processors get 
more “bang” out of a die 



Stream-C program

MPEG-2 video encoder



MPEG-2 I-frame encoder

Q: Quantization, IQ: Inverse Quantization, DCT: Discrete Cosine Transform

Global communication (from RAM) needed for the reference frames 

(needed to ensure persistent information)



 Instruction-level
◦ exploit parallelism in the scalar operations within a 

kernel
◦ for example, gen_L_blocks, gen_C_blocks can occur in 

parallel

 Data-level
◦ operate on several data items within a stream in 

parallel
◦ for example, different blocks can be converted 

simultaneously
◦ note, however, that this gives up the benefits that 

come with sequential processing (see later)

 Task parallelism
◦ must obey dependencies in the stream graph
◦ for example, the two DCTQ kernels could run in 

parallel



 Stream elements 
◦ points (vertex stage)

◦ fragments, essentially pixels (fragment stage)

 Kernels
◦ vertex and fragment shaders

 Memory
◦ texture memory (SRFs)

◦ not-exposed LRF, if at all

◦ bandwidth to RAM better, with PCI-Express



 Data parallelism
◦ fragments and points are processed in parallel

 Task parallelism
◦ fragment and vertex shaders can work in parallel

◦ data trabsfer from RAM can be overlapped with 

computation

 Instruction parallelism
◦ see task-parallelism



 Stream processors allow looping and jumping
◦ not possible on GPUs (at least not straighforward)

 Stream processors follow a Turing machine
◦ GPUs are restricted (see above) 

 Stream processors have much more memory
◦ GPUs have 256 MB, soon 512 MB 



 GPUs are not 100% stream processors, but 
they come close 
◦ and one can actually buy them, cheaply

 Loss of jumps and loops enforces pipeline 
discipline

 Lack of memory allows use of small caches 
and prevents swamping the chip with data

 Data parallism often requires task 
decomposition into multiple passes (see later) 
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