

 Von Neumann
◦ traditional CPUs

 Systolic arrays

 SIMD architectures
◦ for example, Intel’s SSE, MMX

 Vector processors

 Stream processors
◦ GPUs are a form of these

 Classic form of programmable processor
 Creates Von-Neumann bottleneck

◦ separation of memory and ALU creates bandwidth
problems

◦ today’s ALUs are much faster than today’s data links
◦ this limits compute-intensive applications
◦ cache management to overcome slow data links adds to

control overhead

 Systolic Arrays
◦ arrange computational units in a specific

topology (ring, line)

◦ data flow from one unit to the next

 SIMD (Same Instruction Multiple Data)

◦ a single set of instructions is executed by different

processors in a collection

◦ multiple data streams are presented to each

processing unit

◦ SSE, MMX is a 4-way SIMD, but still requires
instruction decode for each word

 Vector processors
◦ made popular by Cray

supercomputers
◦ represent data as a vector
◦ load vector with a single

instruction (amortizes
instruction decode
overhead)

◦ exposes data parallelism
by operating on large
aggregates of data

 In VLSI technology, computing is cheap
◦ thousands of arithmetic logic units operating at

multiple GHz can fit on 1cm2 die

 But… delivering instructions and data to
these is expensive

 Example:
◦ only 6.5% of the Itanium die is devoted to its 12

integer and 2 floating point ALUs and their registers
◦ remainder is used for communication, control, and

storage

 Thus, general-purpose use of CPUs comes at
a price

 In contrast:
◦ the more efficient control and communication on

the Nvidia GeForce4 enables the use of many
hundreds of floating-point and integer ALUs

◦ for the special purpose of rendering 3D images

◦ this task exposes abundant parallelism

◦ requires little global communication and storage

 Goal:
◦ expose these patterns of communication, control,

and parallelism to a wider class of applications
◦ Create a general purpose streaming architecture

without compromising its advantages

 Proposed streaming architectures
◦ Imagine (Stanford)
◦ CHEOPS

 Existing implementations that come close
◦ Nvidia FX, ATI Radeon GPUs
◦ enable GP-GPU (general purpose streaming, GP-

GPU)

 Organize an application into streams and
kernels
◦ expose inherent locality and concurrency (here,

of media-processing applications)

 This creates the programming model for
stream processors
◦ and therefore also for GPGPU

 Local register files (LRFs)
◦ operands for arithmetic operations (similar to

caches on CPUs)
◦ exploit fine-grain locality

 Stream register files (SRFs)
◦ capture coarse-grain locality
◦ efficiently transfer data to and

from the LRFs

 Off-chip memory
◦ store global data
◦ only use when necessary

 These form a bandwidth hierarchy as well
◦ roughly an order of magnitude for each level

◦ well matched by today’s VLSI technology

 By exploiting the locality of media operations
the hundreds of ALUs can operate at peak
rate

 While CPUs and DSPs rely on global storage
and communication, stream processors get
more “bang” out of a die

Stream-C program

MPEG-2 video encoder

MPEG-2 I-frame encoder

Q: Quantization, IQ: Inverse Quantization, DCT: Discrete Cosine Transform

Global communication (from RAM) needed for the reference frames

(needed to ensure persistent information)

 Instruction-level
◦ exploit parallelism in the scalar operations within a

kernel
◦ for example, gen_L_blocks, gen_C_blocks can occur in

parallel

 Data-level
◦ operate on several data items within a stream in

parallel
◦ for example, different blocks can be converted

simultaneously
◦ note, however, that this gives up the benefits that

come with sequential processing (see later)

 Task parallelism
◦ must obey dependencies in the stream graph
◦ for example, the two DCTQ kernels could run in

parallel

 Stream elements
◦ points (vertex stage)

◦ fragments, essentially pixels (fragment stage)

 Kernels
◦ vertex and fragment shaders

 Memory
◦ texture memory (SRFs)

◦ not-exposed LRF, if at all

◦ bandwidth to RAM better, with PCI-Express

 Data parallelism
◦ fragments and points are processed in parallel

 Task parallelism
◦ fragment and vertex shaders can work in parallel

◦ data trabsfer from RAM can be overlapped with

computation

 Instruction parallelism
◦ see task-parallelism

 Stream processors allow looping and jumping
◦ not possible on GPUs (at least not straighforward)

 Stream processors follow a Turing machine
◦ GPUs are restricted (see above)

 Stream processors have much more memory
◦ GPUs have 256 MB, soon 512 MB

 GPUs are not 100% stream processors, but
they come close
◦ and one can actually buy them, cheaply

 Loss of jumps and loops enforces pipeline
discipline

 Lack of memory allows use of small caches
and prevents swamping the chip with data

 Data parallism often requires task
decomposition into multiple passes (see later)

 U. Kapasi, S. Rixner, W. Dally et al.
“Programmable stream processors,” IEEE
Computer August 2003

 S.Venkatasubramanian, “The graphics card as a

stream computer,“ SIGMOD DIMACS, 2003

